Влияние на производительность различных факторов.
Повышение коэффициента полезного действия солнечных модулей – головная боль всех исследователей, работающих в данном направлении. На сегодняшний день КПД подобных устройств находится в пределах от 15 до 25 %. Процент очень низкий. Солнечные батареи являются крайне прихотливым устройством, стабильная работа которых зависит от множества причин.
К основным факторам, которые могут двояко влиять на производительность, можно отнести:
- Материал основы солнечных батарей. Самым слабым в этом плане является поликристаллические солнечные батареи, имеющие КПД до 15 %. Перспективными же можно считать модули на основе индий-галлия или кадмий-теллура, имеющие до 20% производительности.
- Ориентация приемника солнечного потока. В идеале, солнечные батареи своей рабочей поверхностью должны быть обращены к солнцу под прямым углом. В таком положении они должны находиться как можно больший период времени. Для увеличения продолжительности правильного позиционирования модулей в области солнца, более дорогие аналоги имеют в своем арсенале устройство слежения за солнцем, которое поворачивает батареи вслед за движением светила.
- Перегрев установок. Повышенная температура негативно сказывается на выработке электроэнергии, поэтому при установке необходимо обеспечить достаточную вентиляцию и охлаждение панелей. Этого добиваются устройством вентилируемого зазора между панелью и поверхностью установки.
- Тень отбрасываемая любым предметом, может значительно испортить показатели КПД всей системы.
Выполнив все требования, и по возможности установив панели в нужном положении, можно получить солнечные батареи с высоким КПД. Именно высоким, а не максимальным. Дело в том, что расчетный, или теоретический КПД, это величина, выведенная в лабораторных условиях, при средних параметрах продолжительности светового дня и количества пасмурных дней.
На практике, конечно же, процент полезного действия будет ниже.
Подбирая солнечные батареи для своего дома, лучше ориентироваться на нижний предел производительности, а не на верхний. Выбрав, таким образом, солнечные модули и все надлежащие для работы компоненты, можно быть уверенным в достаточной мощности устанавливаемой установки. Выбрав нижний предел производительности при расчетах, можно сэкономить на покупке дополнительных панелей, которые покупаются для перестраховки, на случай нехватки мощности.
Обнадеживающие перспективы развития.
На сегодняшний день абсолютный рекорд КПД в солнечной энергетике принадлежит Американским разработчикам и составляет 42,8 %. Это значение на 2 % выше предыдущего рекорда 2010 года. Рекордное количество энергии удалось добиться при усовершенствовании солнечной батареи из кристаллического кремния. Уникальностью такого исследования служит тот факт, что все замеры были проведены исключительно в рабочих условиях, то есть не в лабораторных и тепличных помещениях, а в реальных местах предполагаемой установки.
В кулуарах все тех же технических лабораторий не прекращаются работы по увеличению последнего рекорда. Следующая цель разработчиков – граница КПД солнечных модулей в 50 %. С каждым днем человечество все ближе приближается к тому моменту, когда солнечная энергия полностью заменит вредные и дорогие, используемые в настоящее время, источники энергии, и станет в один ряд с такими гигантами как гидроэлектростанции.
Источник
Последние разработки, увеличивающие показатель КПД
Чуть ли не каждый день ученые по всему миру заявляют о разработке нового метода, позволяющего увеличить коэффициент полезного действия солнечных модулей. Познакомимся с самыми интересными из них. В прошлом году компания Sharp представила общественности солнечный элемент, эффективность которого составила 43,5%. Этой цифры они смогли добиться с помощью установки линзы для фокусировки энергии непосредственно в элементе.
Не отстают от компании Sharp и немецкие физики. В июне 2013 года они представили свой фотоэлемент площадью всего в 5,2 кв. мм, состоящий из 4-х слоев полупроводниковых элементов. Такая технология позволила добиться КПД в 44,7%. Максимальная эффективность в данном случае также достигается за счет помещения вогнутого зеркала в фокус.
В октябре 2013 года были опубликованы результаты работ ученых из Стэнфорда. Они разработали новый жаропрочный композит, способный увеличить производительность фотоэлементов. Теоретическое значение КПД составляет около 80%. Как мы писали выше, полупроводники, в состав которых входит кремний, способны поглощать лишь ИК-излучение. Так вот действие нового композитного материала направлено на перевод высокочастотного излучения в инфракрасное.
Следующими стали английский ученые. Они разработали технологию, способную увеличить эффективность элементов на 22%. Они предложили на гладкой поверхности тонкопленочных панелей разместить наношипы из алюминия. Этот металл был выбран по причине того, что солнечный свет им не поглощается, а, наоборот, рассеивается. Следовательно, увеличивается количество поглощаемой солнечной энергии. Отсюда и рост производительности солнечной батареи.
Здесь приведены лишь основные разработки, но дело ими не ограничивается. Ученые борются за каждую десятую долю процента, и пока им это удается. Будем надеяться, что в ближайшем будущем показатели эффективности солнечных батарей будут на должном уровне. Ведь тогда и выгода от использования панелей будет максимальной.
Статью подготовила Абдуллина Регина
В Москве уже применяют новые технологии освещения улиц и парков, я думаю, там экономическая эффективность была просчитана:
Исследования и новейшие разработки в области повышения КПД
Стоит отдельно остановиться на новейших достижениях в области повышения КПД и рассмотреть самые эффективные солнечные батареи. Многие из них еще находятся в стадии теоретических разработок и не прошли полных испытаний в реальных условиях эксплуатации.
Экспериментальные модели представлены следующими производителями:
- Фирма Sharp подготовила образцы продукции с КПД порядка 44,4%. Ее изделия до сих пор занимают лидирующее место во всем мире. Новейшие разработки отличаются сложным устройством, состоят из трех слоев, а на разработку и испытания было затрачено несколько лет. Более простые модели все равно работают с эффективностью 37,9%, что в сравнении с обычными системами является серьезным технологическим прорывом.
- Солнечные панели, разработанные в испанском исследовательском институте – IES. В ходе испытаний они показали эффективность в пределах 32,6%. Такой высокий КПД удалось получить за счет использования двухслойных модулей. Стоимость изделий ниже, чем у других производителей, но на данном этапе использовать их в обычных жилых домах экономически невыгодно и нецелесообразно.
Исследования и разработки для повышения КПД
Наиболее перспективным направлением исследований считается создание многослойных панелей. Основной упор делается на возможность получения энергии от инфракрасных и ультрафиолетовых лучей, которые во многом более активны, чем видимые части спектра. Работы ведутся и в области очистки кремниевых структур, создания наиболее однородных и чистых кристаллов.
Еще одним направлением является создание максимально плотных и ровных соединений полупроводников. Электрический ток возникает на границе двух материалов, и, если поверхность обоих изобилует впадинами и прочими изъянами, эти участки исключаются из общей рабочей зоны. Проблема технически сложная, поскольку речь идет о микронной точности шлифовки. Для промышленного производства эти методики пока слишком сложны, а цены на панели будут недоступны рядовым покупателям. Процесс исследований происходит непрерывно, поэтому ожидать положительных сдвигов можно в любой момент.
Солнечные батареи с высоким КПД: виды преобразователей
КПД солнечный батарей – это величина, которая равняется отношению мощности электроэнергии к мощности падающих на панель устройства солнечных лучей. Современные солнечные батареи обладают КПД в диапазоне от 10 до 45%. Такая большая разница обуславливается различиями между материалами изготовления и конструкцией пластин батарей.
Так, пластины солнечных батарей могут быть:
- Тонкопленочными;
- Многопереходными.
Солнечные батареи последнего типа, на сегодня, являются наиболее дорогими, но и наиболее продуктивными. Это связано с тем, что каждый переход в пластине поглощает волны с определенной длиной. Таким образом, устройство охватывает весь спектр солнечных лучей. Максимальный КПД батарей с многопереходными панелями, полученный в лабораторных условиях, составляет 43,5%.
Энергетики с уверенностью заявляют, что через несколько лет этот показатель возрастет до 50%. КПД тонкопленочных пластин зависит, в большей степени, от материала их изготовления.
Так, тонкопленочные солнечные батареи делятся на такие виды:
- Кремниевые;
- Кадмиевые.
Наиболее популярными солнечными батареями, которые можно использовать в бытовых целях, считаются установки с кремниевыми пленочными пластинами. Объем таких устройств на рынке составляет 80%. Их КПД достаточно низкий – всего 10%, но они отличаются доступностью и надежностью. На несколько процентов показатель полезного действия выше у кадмиевых пластин. Пленки с частицами селенида, меди, индия и галлия имеют более высокий КПД, который равняется 15%.
От чего зависит КПД
На высокий процент эффективной выработки электроэнергии батареями влияет множество факторов. Основными из них являются:
- Угол падения солнечного света на поверхность панелей.
- Температурный коэффициент.
- Погодные условия.
- Наличие тени, грязи, снега.
- Затемнение элементов.
Максимальная эффективность солнечных панелей достигается при попадании солнечного света на поверхность модулей под углом 90 градусов, то есть перпендикулярно. При этом, даже если батарея располагается с учетом всех требований угла наклона, поверхность фотоэлементов должна быть чистой и не заслоняться деревьями или другими постройками.
Сегодня можно приобрести солнечную батарею, которая уже оснащена функцией слежения и контроля расположения солнца. То есть панель сама подстраивается под угол падения солнечных лучей. Но подобные устройства достаточно дорого стоят и применяются на промышленных объектах.
При установке солнечных модулей следуйте рекомендациям специалистов. Во-первых, выбирайте южную сторону для размещения конструкций, чтобы избежать попадания тени на них, а во-вторых, соблюдайте угол наклона согласно времени года и региона проживания. Ведь чем больше солнечного света попадает на поверхность, тем выше КПД, а соответственно, и выработка электроэнергии. Учитывайте, что в зимнее время показатель эффективности может подать в половину, а то и больше. И не забывайте очищать модули от снега и грязи, так как это становится препятствием для попадания света.
Еще одним важным препятствием, снижающим общую эффективность выработки батареями электрического тока, выступает температурный коэффициент. В результате попадания солнечных лучей на поверхность модулей они нагреваются, температура может доходить до 80 градусов. Критические температурные значения напрямую отражаются на уровне КПД. Показатель снижается. Необходимо проводить мероприятия, направленные на уменьшение потери эффективности. Например, это можно сделать за счет свободного пространства между батареями, из-за чего воздушные массы смогут охлаждать модули, а также путем периодического протирания их.
Текущее освещение
Эффективность работы солнечных панелей будет максимальной, если обеспечить им равномерную освещённость по всей площади. В ряде случаев на отдельные элементы системы попадает меньше солнечного света, в результате общее количество вырабатываемой электроэнергии снижается. Если какой-либо из элементов находится в тени, рекомендуется его временно отключить. Необходимо в течение светового дня следить за освещённостью панелей.
Узнать уровень солнечной инсоляции в вашем регионе
Специалисты рекомендуют устанавливать фотоэлементы на солнечной стороне. Существуют также поворотные системы, они автоматически отслеживают положение Солнца и поворачиваются по мере его перемещения по небосводу.
Изменения температурного режима
Многие ошибочно считают, что чем выше поднимаются столбики термометра, тем более эффективно работают солнечные системы. Производительность панелей зависит от угла падения лучей и их освещённости. Из-за высоких температур, элементы, наоборот, могут выйти из строя.
Нередко системы работают эффективнее в зимнее время года, когда солнце светит не так сильно, зато температура на улице не критическая. Чтобы избежать перегрева панелей в летний зной, рекомендуется устанавливать их с небольшими зазорами. Циркулирующий воздух будет их немного охлаждать.
Зазоры помогают избежать перегрева батарей.
Возможные загрязнения
Пыль, грязь, опавшие листья, влага, снег – всё это загрязняет поверхности фотоэлементов. В результате эффективность солнечных панелей существенно снижается. Нужно регулярно чистить панели, протирать их, убирать снег. Кроме того, существуют специальные составы, которыми покрывают поверхность элементов, чтобы сократить загрязнения.
Развитие отечественной космической фотоэнергетики
Об энергоснабжении космических аппаратов конструкторы задумывались еще на стадии проектирования самых первых ракет-носителей. Ведь в космосе батареи не заменить, значит, срок активной службы космического аппарата обусловлен только емкостью бортовых батарей. Первый и второй искусственные спутники земли были оснащены только бортовыми батареями, которые истощились через несколько недель работы. Начиная с третьего спутника, все последующие космические аппараты были оборудованы солнечными батареями.
Главным разработчиком и изготовителем космических солнечных электростанций было научно-производственное предприятие «Квант». Солнечные панели «Кванта» установлены практически на всех отечественных космических аппаратах. Вначале это были кремниевые солнечные батареи. Их мощность была ограничена как заданными размерами, так и весом. Но затем учеными «Кванта» были разработаны и изготовлены первые в мире солнечные батареи на основе совершенно нового полупроводника – арсенида галлия (GaAs).
Кроме того, были запущены в производство абсолютно новые гелиевые панели, которые не имели аналогов в мире. Этой новинкой стали высокоэффективные гелиевые панели на подложке, имеющей сетчатую или струнную структуру.
Гелиевые панели с сетчатой и струнной подложкой
Специально для установки на космических аппаратах с низкими орбитами были спроектированы и изготовлены кремниевые гелиевые панели с двусторонней чувствительностью. Например, для российского сегмента международной космической станции (космического аппарата «Звезда») были изготовлены панели на кремниевой основе с двусторонней чувствительностью, причем площадь одной панели составляла 72 м².
Солнечная батарея космического аппарата «Звезда»
Были также разработаны на базе аморфного кремния и запущены в производство гибкие солнечные батареи, имеющие прекрасные удельные весовые характеристики: при весе всего 400 г/м² эти батареи вырабатывали электроэнергию с показателем 220 Вт/кг.
Гибкая гелиевая батарея на базе аморфного кремния
Чтобы повысить эффективность солнечных элементов, в большом объеме проводились наземные исследования и испытания, которые выявляли отрицательные воздействия Большого Космоса на гелиевые панели. Это позволило перейти к изготовлению солнечных батарей для космических аппаратов различных типов со сроком активной работы до 15 лет.
Как увеличить КПД панелей
Можно ли повысить эффективность солнечных батарей? Чтобы получить максимальный эффект от установки солнечной системы необходимо соблюдать все правила эксплуатации панелей: контролировать угол наклона, правильно разместить с возможностью проветривания, очищать поверхность фотоэлементов и исключать затемненные участки. Кроме того, отдавайте предпочтение тем батареям, которые изготовлены из высококлассного кремния. Именно они смогут обеспечить наивысший КПД.
Повысить КПД солнечной панели
Сегодня этим вопросом занимаются научно-исследовательские центры, и данное направление является приоритетным. Инженерами предпринимаются попытки производить такую солнечную систему, которая будет состоять из модулей разных материалов. Смысл такой задумки заключается в том, чтобы разные материалы и несколько слоев могли впитывать в себя все типы энергии: как инфракрасное излучение, так и ультрафиолетовое. Подобное решение сможет повысить КПД в два, а то и в три раза. Ученые предполагают, что такие современные модули смогут производить до 90% эффективности. Более высокий процент производительности позволяет не только вырабатывать больше энергии, но и сократить срок окупаемости.
Плюсы
- За счет того, что в панелях нет подвижных узлов и элементов, повышается долговечность. Производители гарантируют срок службы в 25 лет.
- Если соблюдать все регламентные работы и правила эксплуатации работа таких систем увеличивается до 50 лет. Обслуживание довольно несложное — своевременно очищать фотоэлементы от пыли, снега и других естественных загрязнений.
- Именно долговечность системы — определяющий фактор для покупки и монтажа панелей. После того как все затраты себя окупят, вырабатываемое электричество получится бесплатным.
Самое главное препятствие для широкого применения таких систем — их высокая стоимость. При низком КПД бытовых солнечных панелей, есть серьезные сомнения в экономической необходимости именно в таком способе добычи электроэнергии.
Но опять же, надо разумно оценивать возможности данных систем и, исходя из этого, рассчитывать ожидаемую отдачу. Полностью заменить традиционную электроэнергию не выйдет, но получить экономию, используя и солнечные системы, вполне реально.
Кроме того, сложно не заметить такие выгоды как:
- Получение электричества в самых удаленных от цивилизации районах;
- Автономность;
- Бесшумность.
Физики из России создали нанолинзы для солнечных батарей
2017-11-14T17:01
2017-11-14T17:01
https://ria.ru/20171114/1508801514.html
Физики из России создали нанолинзы для солнечных батарей
https://cdn23.img.ria.ru/images/150880/06/1508800685_0:0:1501:851_1036x0_80_0_0_1c05cac86d33126ad1c34faf1737169e.png
РИА Новости
https://cdn22.img.ria.ru/i/export/ria/logo.png
РИА Новости
https://cdn22.img.ria.ru/i/export/ria/logo.png
МОСКВА, 14 ноя – РИА Новости. Ученые из Университета ИТМО создали особое покрытие для солнечных батарей из стеклянных наносфер, похожих по форме на капли воды и повышающих их КПД примерно на 20%, говорится в статье, опубликованной в журнале Optica.
«Три года назад мы попробовали покрыть поверхность батареи микросферами. Они существенно улучшали поглощение, но, к сожалению, отражали довольно много света. Мы решили убрать верхнюю часть сферы и сделать своеобразную линзу, которая будет фокусировать свет в батарее. Пытаясь сделать ее, мы нашли более изящное решение. В итоге, конечная структура превзошла наши ожидания, основанные на теоретических расчетах», ‒ рассказывает Михаил Омельянович из Университета ИТМО в Санкт-Петербурге.
Кремниевые солнечные батареи и многие их аналоги из других полупроводниковых материалов обладают достаточно низкой эффективностью – они преобразуют лишь небольшую долю энергии Солнца, около 7-15%, в электрический ток. Это, вкупе с высокой себестоимостью подобных генераторов электричества, является сегодня одной из главных проблем для их распространения в быту и промышленности.
В последние годы физики прикладывают огромные усилия для ликвидации этой проблем, создавая более эффективные полупроводниковые материалы, такие как перовскит, и различные покрытия, помогающие фотоэлементам поглощать примерно треть или почти половину энергии лучей Солнца. К примеру, год назад ученые смогли повысить КПД солнечных батарей почти в два раза, «скопировав» наночастицы, которыми покрыты крылья бабочек.
В отличие от солнечных батарей из кристаллического кремния или перовскитов, фотоэлементы на базе аморфного кремния обладают достаточно низким КПД — не более 7%, но при этом их можно наносить тонким и фактически прозрачным слоем на любую поверхность, в том числе и стекла.
По этой причине он достаточно долгое время считался главным кандидатом на роль основы большинства «бытовых» солнечных панелей, однако в последние годы его начали вытеснять более эффективные, хотя и более опасные для здоровья и экологии панели из полупроводниковых соединений металлов, селена и теллура.
После нескольких неудач ученые решили поменять структуру верхнего электрода фотоэлемента, погрузив в него множество микроскопических стеклянных сфер, которые, как рассчитывали ученые, должны были «захватывать» свет и удерживать его внутри батареи на протяжении достаточно долгого времени.
Как отмечает ученый, такой электрод со стеклянными вкраплениями можно использовать создания для тонких солнечных батарей не только на основе аморфного кремния, но и любых других материалов.
Подобная «поатомная» печать, по словам физиков, уже используется во многих отраслях промышленности и ее внедрение не потребует больших затрат времени и средств, что, как они надеются, поможет ускорить внедрение их открытия в практику.
Санкт-Петербургский университет информационных технологийСанкт-Петербург
Влияние на производительность материала ячеек
В зависимости от использованных в конструкции полупроводниковых материалов, номинальный КПД солнечных панелей составляет:
- Аморфный кремний, A-Si. Долгое время эффективность преобразования не превышала 5-7%, но с переходом на тонкопленочные технологии поднялась до 14-16%. КПД довольно стабилен, поскольку «рыхлая» по форме поверхность ячеек хорошо поглощает даже слабый или рассеянный свет.
- Поликристаллический кремний, Poli-Si. Номинальные показатели находятся в диапазоне 19-21%. Падение производительности при неблагоприятных световых условиях среднее, что обеспечивается разнонаправленным расположением кристаллов поглощающего слоя.
Монокристаллический кремний, Mono-Si. Обеспечивает самый высокий выход энергии при идеальных условиях освещения, до 24%. При изменении положения относительно солнца и высоких температурах КПД таких солнечных батарей значительно снижается.
Теллурид кадмия, Cd-Te. Фотоэлектрические элементы этого типа быстро набирают популярность благодаря сочетанию высокой средней эффективности и низкой цены. Более стабильная производительность, чем у чистых кристаллических кремниевых модулей, достигается идеальной шириной запрещенной зоны p/n-перехода. Коэффициент полезного действия немного меньше поликристаллов, но среднегодовая отдача выше.
Редкоземельный сульфид меди/индия/галлия, CIGS. Благодаря возможности многослойной компоновки ячеек, способны добиваться максимального поглощения на уровне до 40% и выше. Широко используются в аэрокосмической промышленности, но «на земле» почти не применяются из-за высокой цены.
Фотовольтаика третьего поколения. В качестве полупроводников использует органику, сложные полимеры или материалы на квантовых точках. Дешевые, простые в производстве и обладают фантастическими способностями поглощения. Несмотря на сравнительно низкий КПД в диапазоне 6-15%, эти солнечные элементы уже сегодня могли бы получить широкое применение, если бы не короткий срок службы. Нынешний рекорд устойчивости не превышает 2000 часов, или менее 3 месяцев, что недостаточно для массового производства и применения.
Стоимость Против Эффективности
Все производители производят ряд панелей с различными рейтингами эффективности в зависимости от используемого типа кремния и от того, используют ли они технологии PERC , многошинные шины или другие технологии ячеек. Очень эффективные панели выше 21% с ячейками N-типа, как правило, намного дороже , поэтому, если стоимость является основным ограничением, они лучше подходят для мест с ограниченным монтажным пространством, в противном случае вы можете заплатить больше за ту же мощность, что и достигается за счет использования 1 или 2 дополнительных панелей. Тем не менее, высокоэффективные панели, использующие элементы N-типа, почти всегда превосходят панели, использующие элементы P-типа, и служат дольше панелей, использующих элементы P-типа, из-за более низкой скорости светоиндуцированной деградации или LID , поэтому дополнительные затраты обычно оправдывают себя в долгосрочной перспективе.
Актуальность данной темы
В настоящее время во всем мире, в том числе и в нашей стране, остро встает вопрос о разработке и внедрении новых источников энергии. Всем известно, что наиболее значимыми из них на сегодняшний день являются нефть, природный газ, уголь, электричество. Запасы нефти и газа не безграничны, в силу всего этого необходимо искать альтернативные источники энергии. Одним из них является использование так называемых солнечных батарей. О солнечной энергетике знают уже давно, это предмет споров и дискуссий среди специалистов. Некоторые считают, что это большая перспектива на будущее, другие уверены в противоположном.
Схема подключения солнечных панелей.
Сейчас очень большое количество крупных кампаний вкладывает миллионы в развитие этой отрасли, в том числе в строительство солнечных электростанций. С одной стороны, солнечные батареи не требуют затрат при их эксплуатации, но стоимость данного оборудования высока. Часть специалистов утверждает, что прибыль от данного проекта не сможет покрыть расходы, связанные со строительством. В противовес этому данные устройства могут работать десятками и сотнями лет, поэтому при длительной эксплуатации прибыль будет налицо. Следует рассмотреть более подробно, какова эффективность солнечных батарей, факторы, ее определяющие. Но сперва нужно ознакомиться с принципом их работы, основными преимуществами.
Расчет производительности
Применение солнечной энергии и экономическую рациональность таких концепций обусловливает эффективность всех видов систем солнечных батарей. Прежде всего учитываются затраты, обращённые на преобразование энергии солнца в электрическую.
Насколько окупаемы и эффективны такие системы, определяют и такие факторы как:
- Тип гелиопанелей и сопутствующего оборудования;
- КПД фотоэлементов и их стоимость;
- Климатические условия. В разных регионах — разная солнечная активность. Она же влияет и на срок окупаемости.
Как подобрать нужную производительность
Перед покупкой панелей необходимо знать, какую необходимую эффективность сможет выдавать солнечная батарея.
Если ваш домашний уровень потребления составляет, к примеру, 100 кВт/месяц (по электросчетчику), то целесообразно чтобы гелиоэлементы вырабатывали столько же.
С этим определились. Пойдем дальше.
Понятно, что гелиостанция работает только в дневное время суток. Мало того — паспортная мощность будет достигнута при наличии ясного неба. Кроме этого, пика мощности можно добиться при условии падения лучей солнца на поверхность под прямым углом.
При изменении положения солнца изменяется и угол панели. Соответственно, при больших углах будет наблюдаться заметное снижение мощности. Это только при условии ясного дня. В пасмурную погоду можно гарантировать падение мощности в 15–20 раз. Даже небольшое облачко или дымка вызывает падение мощности в 2–3 раза
Это тоже надо принимать во внимание
Теперь — как рассчитать время работы панелей?
Рабочий период, при котором батареи смогут эффективно работать практически на всю мощность, составляет примерно 7 часов. С 9–00 до 4–00 вечера. В летнее время световой день больше, но и выработка электричества в утреннее и вечернее время совсем мала — в пределах 20–30 %. Остальная часть, это 70 %, будет вырабатываться, опять-же, в дневное время, с 9 до 16 часов.
Итак, получается, что если панели имеют паспортную мощность 1 кВт, то в самый летний, самый солнечный день выработают 7 кВт/час электроэнергии. При том условии, что проработают с 9 до 16 часов дня. То есть в месяц это составит 210 кВт/час электроэнергии!
Это комплект панелей. А одна панелька мощностью всего-навсего в 100 ватт? За день она даст 700 ватт/час. В месяц 21 кВт.