Первый смеситель напечатанный на 3D-принтере

Недостатки 3D-принтеров

Минусы есть у всего, и 3D-принтеры — не исключение. Поэтому на сегодняшний день у технологии существует определенное количество недостатков.

И первый из них — это, наверное, размеры печати. Вы видите на фотографиях «шкафчики» этих принтеров — и вот именно ими всё и ограничивается. Принтер может напечатать только то, что поместится на платформе. А что-то больше этого — разве что по частям, а затем части придется тем или иным образом склеить. И даже несмотря на то, что уже сейчас существует прототип 3D-принтера, размеры рабочей платформы которого практически не ограничены ничем, о массовом внедрении такой технологии говорить пока рано.

Второй недостаток касается самой технологии. Послойная структура сама по себе означает, что между этими слоями всегда будет некий рубеж, переход: поверхность останется матовой и шероховатой. Конечно, последующая обработка может «сгладить углы» во всех смыслах, но эта «доработка напильником» явно не говорит в пользу технологии. К тому же, слоистая структура означает меньшую плотность и, соответственно, меньшую прочность объекта, по сравнению с цельными деталями.

Третий недостаток — достаточно высокая цена 3D-принтеров на сегодняшний день. Они стоят от 20 тысяч рублей, а хорошая модель стоит в среднем 100 тысяч, и пока подешевение не ожидается.

Критика и проблемы

Медленно и без гарантий: печать довольно медленная, недостаточно точная. Огромная проблема в любительских принтерах — брак. Например, деталь может отклеиться от подложки прямо во время печати, и произойдёт ад. Или моторы раскалибруются, и сопло начнёт промазывать мимо нужных мест.

Низкая эффективность: чтобы напечатать деталь 10 × 10 см, нужен принтер размером как минимум 50 × 50 см, который будет стоить несколько сотен долларов.

Не самые прочные материалы: 3D-печать пока что ограничена пластиками и смолами. Есть отдельные технологии печати на базе металлического порошка, но если вам нужна стальная деталь — вам нужен не 3D-принтер, а нормальный токарь и станок. Но на станке можно сделать не всякую деталь. 

Не всегда понятно зачем. В промышленности 3D-принтеры используют для прототипирования, но в массовом производстве эти технологии не используются. Для домашнего применения тоже неясно: на 3D-принтерах печатают маленькие пластиковые штучки для любительских проектов… и всё. Очень мало случаев, когда обычный человек мог бы захотеть напечатать у себя дома что-то применимое в хозяйстве.

Зачем?

Первое, что нужно для себя понять — а зачем, собственно, нужен 3D-принтер? Что мы хотим — просто развлекаться и создавать модели и макеты? Использовать принтер для ведения бизнеса? Воплощать творческие фантазии? Бизнес, конечно, оценил 3D-печать давно: такие мировые промышленные гиганты, как Airbus, Boeing, General Electric, Ford, Siemens, NASA используют их постоянно; и это не говоря уже об инженерах, ученых, медиках и огромном количестве мелких предпринимателей.

Дома 3D-принтер открывает широчайшие возможности использования и применения своей фантазии, и поскольку самые дешевые модели стоят от 20 тыс. рублей и выше, они доступны практически каждому человеку с компьютером.

Применений на самом деле можно найти массу. Кто-то задумает сделать себе стол с макетами, воссоздающие какую-нибудь область реально существующую или фантастическую (скажем, поверхность планеты из «Звездных войн»). Кто-то напечатает себе солдатиков и вспоминает детство. А кто-то печатает паззлы детям, придумывая все новые и новые варианты. К тому же можно создать работоспособный макет чего-то более сложного.

А один индивидуум вообще напечатал себе пластиковый и полностью работоспособный пистолет, который не виден на металлодетекторах. В связи с этим законники некоторых стран уже начинают беспокоиться на тему срочного внесения поправок в соответствующие законы, дабы не превратить новую технологию в оружие массового уничтожения (хотя Форд тоже не отвечал за то, что кто-то совершал ограбления, пользуясь его машинами).

В общем, резюмируя, можно выделить несколько основных преимуществ 3D-принтеров: домашнее творчество, использование более сотни различных типов материалов (не только огромное количество самых разнообразных пластиков и полимерных смол, но и металлы, бумага, керамика, ткань, пищевые продукты, соль, лунный и марсианский грунт и даже живые клетки!), универсальность и снижение трудоёмкости (один принтер может заменить несколько сложных агрегатов), простота в использовании (об этом мы поговорим далее), экономичность, быстрота создание объектов и гибкость технологии.

Кстати, в сферу применения можно включить и медицину: инновационная биомедицинская печать сможет предложить в ближайшем будущем искусственные органы и ткани тела, а сегодня уже можно печатать протезы и хирургические имплантаты.

Как устроен 3D-принтер

В основном принтеры трехмерной печати состоят из одинаковых деталей и по устройству похожи на обычные принтеры. Главное отличие — очевидное: 3D-принтер печатает в трех плоскостях, и кроме ширины и высоты появляется глубина. 

Вот из каких деталей состоит 3D-принтер, не считая корпуса:

  • экструдер, или печатающая головка — разогревает поверхность, с помощью системы захвата отмеряет точное количество материала и выдавливает полужидкий пластик, который подается в виде нитей; 
  • рабочий стол (его еще называют рабочей платформой или поверхностью для печати) — на нем принтер формирует детали и выращивает изделия;
  • линейный и шаговый двигатели — приводят в движение детали, отвечают за точность и скорость печати;
  • фиксаторы — датчики, которые определяют координаты печати и ограничивают подвижные детали. Нужны, чтобы принтер не выходил за пределы рабочего стола, и делают печать более аккуратной;
  • рама — соединяет все элементы принтера.

Все это управляется компьютером.

Технологии 3D-печати

Кратко об основных методах 3D-принтинга.

Стереолитография (SLA). В стереолитографическом принтере лазер облучает фотополимеры, и формирует каждый слой по 3D-чертежу. После облучения материал затвердевает. Прочность изделия зависит от типа полимера — термопластика, смол, резины. 

Цветную печать стереолитография не поддерживает. Из других недостатков — медленная работа, огромный размер стереолитографических установок, а еще нельзя сочетать несколько материалов в одном цикле.

Эта технология — одна из самых дорогих, но гарантирует точность печати. Принтер наносит слои толщиной 15 микрон — это в несколько раз тоньше человеческого волоса. Поэтому с помощью стереолитографии делают стоматологические протезы и украшения. 

Промышленные стереолитографические установки могут печатать огромные изделия, в несколько метров. Поэтому их успешно применяют в производстве самолетов, судов, в оборонной промышленности, медицине и машиностроении. 

Селективное лазерное спекание (SLS). Самый распространенный метод спекания порошковых материалов. Другие технологии — прямое лазерное спекание и выборочная лазерная плавка.

Метод изобрел Карл Декарт в конце восьмидесятых: его принтер печатал методом послойного вычерчивания (спекания). Мощный лазер нагревает небольшие частицы материала и двигается по контурам 3D-чертежа, пока изделие не будет готово. Технологию используют для изготовления не цельных изделий, а деталей. После спекания детали помещают в печь, где материал выгорает. SLS использует пластик, керамику, металл, полимеры, стекловолокно в виде порошка.

Технологию SLS используют для прототипов и сложных геометрических деталей. Для печати в домашних условиях SLS не подходит из-за огромных размеров принтера.

Послойная заливка полимера (FDM), или моделирование методом послойного наплавления. Этот способ 3d-печати изобретен американцем Скоттом Крампом. Работает FDM так: материал выводится в экструдер в виде нити, там он нагревается и подается на рабочий стол микрокаплями. Экструдер перемещается по рабочей поверхности в соответствии с 3D-моделью, материал охлаждается и застывает в изделие. 

Преимущества — высокая гибкость изделий и устойчивость к температурам. Для такой печати используют разные виды термопластика. FDM — самая недорогая среди 3D-технологий печати, поэтому принтеры популярны в домашнем использовании: для изготовления игрушек, сувениров, украшений. Но в основном моделирование послойным наплавлением используют в прототипировании и промышленном производстве — принтеры довольно быстро печатают мелкосерийные партии изделий. Предметы из огнеупорных пластиков изготовляют для космической отрасли. 

Струйная 3D-печать. Один из первых методов трехмерной печати — в 1993 году его изобрели американские студенты, когда усовершенствовали обычный бумажный принтер, и вскоре технологию приобрела та самая компания 3D Systems. 

Работает струйная печать так: на тонкий слой материала наносится связующее вещество по контурам чертежа. Печатная головка наносит материал по границам модели, и частицы каждого нового слоя склеиваются между собой. Этот цикл повторяется, пока изделие не будет готово. Это один из видов порошковой печати: раньше струйные 3D-принтеры печатали на гипсе, сейчас используют пластики, песчаные смеси и металлические порошки. Чтобы сделать изделие крепче, после печати его могут пропитывать воском или обжигать.

Предметы, которые напечатали по этой технологии, обычно долговечные, но не очень прочные. Поэтому с помощью струйной печати делают сувениры, украшения или прототипы. Такой принтер можно использовать дома. 

Еще струйную технологию используют в биопечати — наносят живые клетки друг на друга послойно и таким образом строят органические ткани. 

Нагревание бетонной смеси в 3d принтере

Такой способ называется экструдивным. Небольшой 3d принтер, который использует пластик, имеет в своей головке еще и нагреватель. Он размягчает (расплавляет) твердый пластиковый стержень, подаваемый на печатающую головку принтера. Далее на поверхности изготавливаемой детали он прилипает к предыдущему слою и застывает. И так слой за слоем.

Нагревание можно использовать и при выдавливании бетонной смеси или нагревать током выдавленный бетон, в состав которого входит токопроводящий графитовый порошок. Это позволяет сократить время застывания (схватывания), но при этом снижаются характеристики прочности бетона. При температуре ниже 10 гр.С увеличивается время схватывания и стекание смеси с поверхности.

Но обычно используют добавки, ускоряющие твердение бетона. В продаже их огромное количество, но надо выбирать те, которые используются для торкрет-бетона. Это позволит избежать стекание нанесенного слоя, так как застывание бетона происходит за несколько минут. Качественные и безопасные ускорители твердения получают на основе бесщелочных неорганических соединений — сульфатов и гидроксидов алюминия.

Из импортных можно назвать такие, как MEYCOSA, Delvo Grete (BASF), Sigunit (Sika), Mapequick (Mapei), MCBauchemie,

из отечественных — Реламикс Торкрет (Полипласт), Центрамент Рапид 640 и 650 (Эм-Си Баухеми), Т-Хим (Химмодификатор). Диапазон использования добавки — 2-8% от веса цемента.

Также можно вместо обычного портландцемента  применить глиноземистый цемент, который даже без добавок значительно быстрее застывает и позволяет получить более прочную конструкцию. При этом он значительно дороже: 1 кг стоит от 20 до 35 руб.

Про ускорители твердения бетона уже упоминалось в статьях по изготовлению ваз для цветов и фонтана (см. тут и тут). Но при этом такая высокая скорость застывания бетона была не нужна, поэтому и использовался обычный недорогой ускоритель.

3D-печать – это дорого?

На фото: самодельный мини-плоттер.

Я бы не сказал. Два года назад, когда я решил, что займусь сборкой 3D-принтера самостоятельно, я составил смету на покупку комплектующих.

Электроника с механикой и одной катушкой пластика приблизительно обошлись мне в 7 500 рублей. Да, пришлось ждать доставки комплектующих с AliExpress, спалить пару плат и драйверов, но этот опыт однозначно того стоит.

На фото: держатель линз для микроскопа.

Скажу сразу, если вы раньше не сталкивались с самостоятельной сборкой электронных устройств, придется потратить несколько недель, а то и месяцев, на изучение темы. Но тут каждый выбирает для себя сам: заказывать принтер в Китае или на доске объявлений в родном городе (простенький вариант в диапазоне от 9 000 до 25 000 рублей) или собрать его самостоятельно.

Отдельно хотел бы предостеречь от покупки готовых брендовых 3D-принтеров. Если вам кажется, что отдав 40 – 50 тысяч рублей вы сразу же станете гуру 3D-печати, вынужден вас разочаровать. При прямых руках принтер за 10 000 рублей может печатать в разы лучше, чем раскрученный брендовый агрегат за 50 тысяч. Проверено лично.

Цена расходников. Средняя стоимость катушки нормального пластика весом 0,75 кг варьируется от 400 до 700 рублей. Чтобы понять, насколько хватит такой катушки, возьмите любую пластиковую игрушку или предмет и взвесьте ее.

Поверьте, с одной катушки филамента можно напечатать ну очень много полезных и крутых вещей.

Дом-экосистема Curve Appeal — 240 кв. м

Другой пример концептуальной 3D-печати — дом-экосистема Curve Appeal площадью 240 кв. м. Здание принадлежит бюро WATG Urban Architecture Studio. Печать здания завершилась в 2020 году.

Стройка продолжалась три года. Проект здания был создан еще в 2016, и тогда занял первое место на конкурсе The Freeform Home Design Challenge. От организаторов дизайнеры получили $8 тыс. на реализацию концепции.

Фото: WATG

Curve Appeal выполнено из 28 напечатанных панелей. Необычная конструкция поддерживает микроклимат дома: по словам дизайнеров, температура внутри здания не зависит от погоды снаружи.

Что происходит

  • В начале мая 2021 года четвертый в мире и первый в ЕС жилой дом, полностью напечатанный на 3D-принтере, принял своих жильцов. Это первый из пяти домов который компания Saint-Gobain Weber Beamix в рамках проекта Milestone планирует возвести на участке земли у канала Беатрикс, в пригороде Эйндховена.

    Репортаж YouTube-канала «РБК Тренды» о доме проекта Milestone

  • Технология 3D-печати уже применялась в Европе для строительства отдельных конструкций зданий, однако в Нидерландах построили первый жилой дом, полностью напечатанный на 3D-принтере.
  • Первыми арендаторами дома стала супружеская пара из Амстердама — 70-летняя Элиза Лутц и 67-летний Харри Деккерс.
  • Дом площадью 94 кв. м сконструирован в форме неправильного валуна и состоит из 24 отдельных бетонных элементов, напечатанных на заводе в Эйндховене, которые были привезены на стройплощадку и установлены на фундамент. Затем в доме были поставлены оконные рамы, положена крыша и нанесены последние штрихи.
  • Для печати была использована огромная роботизированная «рука» с соплом, которое впрыскивает специально разработанный цемент, имеющий текстуру взбитых сливок. Цемент печатается по проекту архитектора, добавляя слой за слоем для создания стены и увеличения ее прочности. Весь процесс печати занял 120 часов или пятеро суток.
  • Форма неправильного валуна была выбрана неспроста — так строители хотели усложнить задачу и проверить способности 3D-принтера. Проверка прошла успешно, — теперь компания готова печатать дома сложной формы по желанию клиента.
  • Месячная аренда дома составляет €800 (чуть больше ₽70 тыс.), что вдвое меньше рыночной арендной платы за подобную недвижимость.

Дома для бездомных — 38 и 45 кв. м

Icon — американский роботехнический стартап, который занимается 3D-печатью масштабных объектов. Например, вместе с NASA они сконструировали прототип ракетной посадочной площадки, а сейчас планируют проект напечатанной лунной космической станции «Олимпус». Но компания занимается и более приземленными постройками.

Вместе с дизайн-бюро Logan Architecture в 2020 году Icon напечатали шесть домов для бедных. Площадь каждого — 38 кв. м. Для строительства использовали 3D-принтер Vulcan II и специальный бетон. Во всех зданиях есть оборудованная кухня, гостиная, спальня и ванная комната. 3D-квартал возвели на территории уже существующего сообщества для бывших бездомных, где сейчас проживает более двухсот человек.

Фото: Shane Reiner-Roth / The Architect’s Newspaper

В Мексике Icon сотрудничает с New Story — фондом, который собирает пожертвования на строительство безопасного и дешевого жилья для бедного населения. В 2019-м организаторы проекта заявили, что планируют напечатать 50 домов, в каждом из которых будет по две спальни, ванная, кухня и гостиная. Площадь мексиканских домов — 45 кв. м.

Фото: Icon

Поскольку дома, которые печатают на 3D-принтерах, строятся в разы быстрее и дешевле обычных, они могут стать спасением для бездомных.

Как появился трехмерный принтер

Не будем слишком утомлять вас датами и кратко перескажем историю 3D-печати.

Предвестник трехмерной печати. В начале 80-х доктор Хидео Кодама разработал систему быстрого прототипирования с помощью фотополимера — жидкого вещества на основе акрила. Технология печати была похожа на современную: принтер печатал объект по модели, послойно. 

Первый 3D-принтинг. Изготовление физических предметов с помощью цифровых данных продемонстрировал Чарльз Халл. В 1984 году, когда компьютеры еще не сильно отличались от калькуляторов, а до выхода Windows-95 было десять лет, он изобрел стереолитографию – предшественницу 3D-печати. Работала технология так: под воздействием ультрафиолетового лазера материал застывал и превращался в пластиковое изделие. Форму печатали по цифровым объектам, и это стало бумом среди разработчиков — теперь можно было создавать прототипы с меньшими издержками. 

Первый производитель 3D-принтеров. Через два года Чарльз Халл запатентовал технологию и открыл компанию по производству принтеров 3D Systems. Она выпустила первый аппарат для промышленной 3D-печати и до сих пор лидирует на рынке. Правда, тогда принтер называли иначе — аппаратом для стереолитографии.

Популярность 3D-печати и новые технологии. В конце 80-х 3D Systems запустила серийное производство стереолитографических принтеров. Но к тому времени появились и другие технологии печати: лазерное спекание и моделирование методом наплавления. В первом случае лазером обрабатывался порошок, а не жидкость. А по методу наплавления работает большинство современных 3D-принтеров. Термин «3D-печать» вошел в обиход, появились первые домашние принтеры.

Революция в 3D-печати. В начале нулевых рынок раскололся на два направления: дорогие сложные системы и те, что доступны каждому для печати дома. Технологию начали применять в специфических областях: впервые на 3D-принтере напечатали мочевой пузырь, который успешно имплантировали.

В 2005 году появился первый цветной 3D-принтер с высоким качеством печати, который создавал комплекты деталей для себя и «коллег».

Что это значит

В последние годы наблюдается активное развитие технологии 3D-печати в строительстве. Кажется, Нидерланды вовсю поддерживают данный тренд, — в начале мая в пригороде Эйндховена был заселен первый в ЕС жилой дом, полностью напечатанный на 3D-принтере, а сейчас за ним последовало открытие первого в мире стального моста, созданного при помощи данной технологии.

Индустрия 4.0

Как выглядит первый в Европе полностью напечатанный на 3D-принтере дом

Мы уже говорили, что за 3D-печатью — будущее строительства и дизайна. По сравнению с классическими постройками, печать на 3D-принтере имеет ряд неоспоримых преимуществ, — короткие сроки строительства, сокращение экономических и экологических издержек, а также простота исполнения сложных форм.

«Речь идет не только о сокращении и оптимизации расходов на строительство, а о том, чтобы дать архитекторам и дизайнерам новый инструмент, — новый очень крутой инструмент, с помощью которого они смогут переосмыслить дизайн своей архитектуры и своих проектов», — отмечает Тим Гёртьенс, соучредитель компании MX3D, занимавшейся возведением моста.

Мика Мос, член совета муниципалитета Амстердама выразил надежду на то, что данная конструкция также поможет городу привлечь качественно новых туристов:

«Это может привлечь новый тип посетителей, — тех, кто больше интересуется архитектурой и дизайном, что изменит восприятие этого района (известного ночными клубами и шумными вечеринками. — РБК Тренды)».

Этапы 3D печати в строительстве

Применяя аддитивную технологию в строительстве можно не только сделать малые архитектурные формы, такие как урны, скамейки, мосты, фигурки для ландшафтного дизайна, но и построить дом. Причём сделать это можно двумя способами:

  • собрать из напечатанных блоков;
  • напечатать дом на месте с помощью полевого 3D принтера.

Не зависимо от способа возведения дома по аддитивной технологии первым этапом будет создание проекта будущей постройки. Впрочем, тут ничего не меняется по сравнению с традиционным методом строительства. Разве что модель должна быть трёхмерной, в электронном виде. Это касается изготовления не только домов, но и других конструкций.

Большинство аддитивных принтеров понимают популярные графические форматы – AutoCAD, Компас-3D, ArchiCAD, и умеют переводить их в визуальные слои для формирования карты рабочего процесса. Так что специальную программу для него использовать не придётся.

После подготовки проекта, основным отличие будет то, что после печати строительных элементов их необходимо будет смонтировать на участке. Тогда как возведение 3D одноэтажного дома целиком осуществляется самим принтером. Также, при печати здания на участке, ещё во время работы оборудования можно устанавливать входные тубы для коммуникаций и электропроводки. При необходимости, ставить армирующие элементы.

Следующим этапом является установка оборудования и подготовка расходных материалов, в частности мелкодисперсного раствора. В качестве «чернил» строительный 3D принтер может использовать пескобетон, специально подготовленную смесь на основе цемента или гипса. Рецепт приготовления раствора обычно указан в инструкции к принтеру и/или предоставляется производителем.

После подготовительных работ, оператор запускает печать и строительный 3D принтер начинает выдавливать раствор по заданной траектории. Слой за слоем создаются внешние и внутренние стены здания или отдельного элемента. Оператор только контролирует процесс экструзии, следит за подачей строительной смеси. Прям как в песне: нажми на кнопку – получишь результат….

При возведении одно-двухэтажного коттеджа при помощи аддитивной технологии в большинстве случаев пустоты между внутренней и внешней стеной заполняют изоляционным материалом, утеплителем. В случае сейсмической зоны и необходимости создания более жёсткого каркаса, напечатанные элементы армируются и используются как несъёмная опалубка, а внутреннее пространство заполняется бетоном.

При печати отдельных деталей в цехе, готовому изделию необходимо высохнуть на воздухе или в сушильной камере для набора прочности. Но это зависит от используемого раствора. Напечатанный дом сушится в естественных условиях и готов к отделочным работам практически сразу.

По окончании печати печатающую головку необходимо достать из принтера и тщательно промыть.

Как запрограммировать 3D-принтер

Краткая инструкция по настройке принтера:

  1. Выбрать 3D-модель. Изделие можно нарисовать самому в специальном CAD-редакторе или найти готовый чертеж — в интернете полно моделей разной сложности.
  2. Подготовить 3D-модель к печати. Это делают методом слайсинга (slice — часть). К примеру, чтобы распечатать игрушку, ее модель нужно с помощью программ-слайсеров «разбить» на слои и передать их на принтер. Проще говоря, слайсер показывает принтеру, как печатать предмет: по какому контуру двигаться печатной головке, с какой скоростью, какую толщину слоев делать. 
  3. Передать модель принтеру. Из слайсера 3D-чертеж сохраняется в файл под названием G-code. Компьютер загружает файл в принтер и запускает 3д-печать.
  4. Наблюдать за печатью.

Так покупать или нет?

Формально покупка 3D-принтера для дома сегодня оправдана только в том случае, если вы можете определить для себя сферу его применения. Выбор моделей достаточно широк, энтузиасты могут собрать принтер даже у себя дома, но тем, кто не хочет сильно рисковать, можно порекомендовать выбрать или одну из самых популярных моделей, которые поддерживаются распространенным и доведённым до ума программным обеспечением (и при этом можно выбрать из десятков приложений). Если же покупка такого необычного агрегата у вас не стоит остро, можно попробовать подождать годик-другой, пока технология не разовьётся достаточно для того, чтобы унифицироваться по максимуму и избавиться от массы неудобных ограничений, которые свойственны ей сегодня.

В любом случае, будущее у технологии весьма радужное и применение она себе уже нашла: а в будущем сферы применения будут только шириться.

Только вот с печатью оружия разберутся.

Убежище от стихий в Амстердаме — 8 кв. м

В 2015 году нидерландское бюро Dus Architects построило крошечный площадью 8 кв. м. Он находится в промышленном районе Амстердама, и его может арендовать любой желающий. Несмотря на небольшую площадь, в убежище есть веранда и диван, который превращается в двуспальную кровать. Ванная, тоже созданная на 3D-принтере, вынесена на улицу. Убежище построили из биопластика на основе льняного масла. Чтобы сделать устойчивый дом без тяжелых каркасов, инженеры сконструировали стены в виде пчелиных сот.

Фото: DUS Architects

«Городское убежище» — часть проекта по строительству временного функционального жилья. Власти Нидерландов надеются, что в будущем 3D-печать поможет обеспечить жильем жертв стихийных бедствий.

RepRap versus коммерция

RepRap не просто так называют предком большинства существующих FDM-принтеров, которые находятся в свободной продаже. Мы уже описали основные лейтмотивы этой, без преувеличения, семьи энтузиастов. За несколько лет было создано четыре поколения 3D-принтеров. Но до сих пор у сообщества нет централизованного канала продажи деталей.

Парадокс заключается в том, что RepRap практически вырастило несколько коммерческих предприятий, которые начали дистанцироваться от сообщества. Эти компании получают весьма большую долю обструкции среди энтузиастов, но, как известно, собака лает, а караван идет.

Одной из первых «отделившихся» является компания Makerbot Industries, специализирующаяся на домашних FDM-принтерах. За счет инвестиций извне (так, основатель Amazon Джефф Безос вложил в проект порядка 10 млн долларов США) фирме удалось хорошо раскрутиться. Компания выпустила четвертое поколение модели Replicator и не стала выкладывать чертежи в открытый доступ.

Ситуация между RepRap и Makerbot Industries, несомненно, имеет две стороны медали. Если бы глава компании Бре Петис (в прошлом активный деятель сообщества, между прочим) не дистанцировался от энтузиастов и не начал продавать свои решения, то, возможно, 3D-печать и не получила бы такую популярность, которую она имеет сейчас.

Что можно напечатать

На 3D-принтере можно напечатать всё что угодно, если у вас есть подходящий материал для печати, готовая модель и достаточно большой принтер.

Прототипы. Часто перед началом производства компании нужно понять, насколько удобной получится вещь в использовании. Чтобы не запускать линию ради одного изделия, его печатают на 3D-принтере и смотрят, что нужно изменить или доработать. На таких прототипах можно заметить, например, что кнопки получились слишком маленькими и их будет неудобно нажимать или что кнопки оказались очень далеко от пальцев и до них нужно будет специально тянуться. 

Запчасти и детали. Иногда найти запчасть от какого-то инструмента сложно или почти невозможно: производитель их не выпускает или модель давно снята с производства. В этом случае можно найти в интернете трёхмерную модель нужной детали или нарисовать её самому в редакторе, чтобы потом отправить это на печать. 

Медицина. Трёхмерная печать активно используется в медицине для создания новых суставов, тканей и лечения пациентов. Отличие от традиционной печати в том, что вместо пластика там печатают специальными «живыми» растворами, которые взаимодействуют друг с другом и ведут себя как настоящие органы и ткани. Благодаря такой технологии сейчас легко напечатать сустав, который хирург может поставить человеку вместо повреждённого.

Хобби и моделирование. На 3D-принтере легко печатать разные миниатюры, коллекционные фигурки и модели.

Производство других роботов. 3D-принтеры пока не умеют производить сервоприводы и микропроцессоры, но уже умеют печатать корпуса и каркасы роботов. 

Дома и здания. Берём здоровенные рельсы с моторами и контроллерами. Устанавливаем подвижное сопло, на которое можно подавать строительную смесь (бетон или полимеры). Можно печатать стены зданий. В отличие от традиционных технологий строительства из кирпича, панелей и блоков, форма стен и здания в целом может быть любой. Фундамент, перекрытия и крыша пока что не печатаются, но это пока.

Представьте: отправляем на Марс полсотни 3D-принтеров на подвижной основе. За год каждый из них печатает ещё по 100 принтеров. Далее все эти 5 000 принтеров разъезжаются по Марсу и начинают строить первую колонию. Пока они строят, мы заказываем в Икее мебель, оформляем доставку, и как раз к моменту доставки наши роботы всё допечатают. Яблони на Марсе вряд ли зацветут, а вот пятиэтажки — могут. 

Apis Cor, Америка

В прошедшем году реализован проект в Подмосковье — городе Ступино, над которыми работало шесть компаний России и штатовский стартап Apis Cor. Основал ее Никита Чен-Юн-Тай – уроженец России и разработчик данного оборудования.

Чтобы напечатать внутренние перегородки, несущие стены и ограждения, потребовались сутки. Извлекали принтер, используя кран -манипулятор. Слои наращивали, применив аддитивную технологию. В практике России этот дом впервые не собирали из напечатанных деталей, а создавали как целостную конструкцию.

Видео:

Видео: 3Д принтер строительный

Дом по форме достаточно сложный. Выбрали его таковым, чтобы можно было показать возможности инновационного устройства. К этому добавим, что строили его в наиболее холодные месяцы, когда температура опускалась ниже 30 градусов, хотя использовать смесь бетона допускается при нижнем пределе +5 по Цельсию.

Принтер, который помог реализовать проект, по конструкции напоминает небольшой башенный кран, имеющий возможность внутренней и внешней печати здания.

Обошлось отпечатанное здание «под ключ» в 593568 рублей, т.е. стоимость одного метра квадратного составила 16 тысяч рублей. И это при том, что форма сооружения сложная. При простой, например, прямоугольной конфигурации, цена могла бы быть тринадцать тысяч рублей.

Преимущества конструкции:

  • Подача и смешивание автоматические;
  • Быстрая настройка – до 30 минут. Не требуется готовить площадку. Мусор после приготовления на строительной площадке не остается, поскольку производство является безотходным;
  • Широкий выбор конфигурации стен и их толщины
  • Прослойка воздуха, образующаяся в камерах стен, позволяет лучше сохранять тепло;
  • Погода не оказывает влияния на постройки благодаря специальным материалам, добавляемым в смесь;
  • Ниже намного стоимость в сравнении с бетонными аналогами, изготавливаемыми по классической технологи;
  • Возможность уплотнения желаемым материалом.

Технические параметры:

  • свое обеспечение программное;
  • обслуживается 2 работниками;
  • площадь — 132 м2;
  • используемый материал –геополимер или фибробетон;
  • размеры – 4х1,6х1,5 метра;
  • все принтера- 2000 кг;
  • энергопотребление-8кВт/ч;
  • высота, на которую происходит подъем, — 3100 мм;
  • суточная производительность в м2 – 100;
  • скорость рабочая и холостого хода в минуту– до 10 и 20 мм;
  • позиционирование и повтор – соответственно ±0,5 мм и 0,1-0,2мм;
  • по всем осям (X, Y, Z) — сервопривод;
  • по Х и Y направляющие – профильные прецизионные;
  • точность по Z – 0,1-0,2 мм;
  • стабилизация горизонтальная автоматическая – инклинометр высокой точности 0.0001 градус;
  • выключатели – бесконтактные по всем осям;
  • пространственное расположение головки печатающей отслеживается дальномером лазерным и гироскопом;
  • пространственная стабилизация – регулятор ПИД.
Поделитесь в социальных сетях:FacebookXВКонтакте
Напишите комментарий